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Abstract. The QCD trace anomaly motivates the consideration of a low energy glueball-gluon coupling
φGµν

aGµν
a. We point out that this should constitute the leading kinetic term for the gluons at low

energies. Anti-screening of the gluons by the glueball then induces a classical Coulomb potential of color
charges which increases at large distances ∼ r1/3 and motivates the inclusion of a corresponding term in
the inter-quark potential.

1 Introduction

A peculiar manifestation of the gluon self-interaction in
non-abelian gauge theories is the emergence of glueballs
in the spectrum [1], and in the present note we would like
to reconsider the low energy effective coupling between
scalar glueballs and the gluons. If we denote the glueball
field by φ, a particular coupling term that should arise is
φGµν

aGµν
a, to account for glueball decay. To our knowl-

edge Cornwall and Soni were the first to explicitly propose
such a contribution to a low energy effective Lagrangian
for QCD [2], and they have also proposed an axion-like
coupling of a pseudoscalar glueball. They have derived
the coupling terms from sum rules, and in the simplest
version one relies on the PCDC type relation for a scalar
glueball [3] in the presence of the trace anomaly [4]. The
trace anomaly breaks conformal symmetry and gives mass
to the glueball, and if the leading contribution of the glue-
ball to the dilatation current in the low energy regime is
normalized as fφ∂µφ the PCDC relation takes the form

m2f2
φ = −2β(g)

g
〈Gµν

aGµν
a〉. (1)

The associated φG2-term entails a mixing of high en-
ergy and low energy degrees of freedom similar to the
joint appearance of quarks and mesons in chiral quark
and quark-meson coupling models [5–15], and the ques-
tion arises how to avoid overcounting of gluonic degrees of
freedom while implementing the glueball-gluon coupling
in a low energy effective action for QCD. The solution
is simple, yet it bears interesting implications: We pro-
pose that the φG2 term should constitute the leading ki-
netic term for the gluons in the low energy regime: Only
the kinetic term of the glueballs should survive far away
from color sources, while the gluon kinetic term disap-
pears. This in turn implies that the decrease of φ with dis-
tance increases the chromo-electric potentials proportional

to the dynamical permeability µ(φ) = ε(φ)−1 ∼ φ−1, and
this yields an increase of chromo-electric potentials ∼ r1/3,
thus motivating a corresponding contribution to the inter-
quark potential. Note that the asymptotic vanishing of
the color-singlet dilaton/glueball does not contradict the
growth of the chromo-electric potential: We will see be-
low that the chromo-electric field vanishes according to
Ea ∼ √

φ ∼ r−2/3.
The observation of Cornwall and Soni and the argu-

ment about the counting of degrees of freedom motivates
us to consider the model

L = − φ

4f
Gµν

aGµν
a − 1

2
∂µφ ·∂µφ− 1

2
m2φ2+jµ

aAµ
a, (2)

where the currents j span an adjoint multiplet of SU(3)
and satisfy

∂µjµ
a + gAµ

bfab
cjµ

c = 0. (3)

As Cornwall and Soni have pointed out, there also
should arise an axion-like coupling of a pseudoscalar glue-
ball, but this plays no role in the examination of the static
Coulomb problem below, and therefore we did not include
it in (2). We also neglected higher order terms in φ and
G2, since these do not affect the asymptotic behavior of
the fields at large distances, which is our main concern.

The principles of low energy effective field theories pro-
vide a relation between the scales f and fφ in (1) and (2),
and the variance of the glueball

4〈φ2〉 = − g

2β(g)f
f3

φ − f2
φ,

but at this point no further determination of fφ is needed.
We have emphasized already that the notion of a glue-

ball-gluon coupling is reminiscent of meson-quark coupling
in the chiral quark model, and from the point of view
of (1) the glueball in the glueball-gluon coupling model
(2) emerges as a QCD dilaton mixing into a gluon bound
state.
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From the Nambu-Goldstone realization one then might
expect a dynamical permittivity ε(φ) = exp(φ/f) like
in low energy string or Kaluza-Klein models. The non-
abelian Coulomb problem in these models has been solved
and yields an ultraviolet regularization r−1 → (r + rφ)−1

with rφ = g/8π
√

3f [16]. However, employing this as a
model for a low energy QCD dilaton would imply a dis-
tinction between the dilaton and the glueball, because
the kinetic terms of the gluons survive in the long wave-
length regime: In the model with ε(φ) = exp(φ/f) the
r-dependence of ε induced by the dilaton in the field of a
pointlike color source is

ε(φ(r)) = exp
(φ(r)

f

)
=

(
1 +

rφ

r

)2
.

The exponential term also would not properly reproduce
the anomaly in the low energy regime, and therefore we
focus on the linear coupling (2) in the present paper.

The glueball-gluon coupling thus gives rise to the type
of scalar-gluon couplings proposed long ago for classical
models of confinement by Kogut and Susskind [17], who
considered a φ4G2-term, and by ’t Hooft [18]. The present
consideration of dynamical permittivites was also moti-
vated by the observation that a (φ2/4f2)G2 term with
a scalar of mass m yields a solvable classical Coulomb
problem with the chromo-electric potentials of a pointlike
charge of color ζ in su(3) given by [19]

Φ = −
√

3
4

f ·
(
ζ ⊗ ζ+ − 1

3

)
· ln

(
exp(2mr) − 1

)
.

The r-dependence of the dynamical permittivity in this
case is

ε(φ(r)) =
φ2(r)
f2 =

rφ

2m

1 − exp(−2mr)
r2 .

The mechanism of enhancement of the chromo-electric
field in these models is similar to confinement from higher
order gauge kinetic terms [20–22], where the chromo-elec-
tric field itself generates a local permittivity. However,
QCD provides a framework for several interesting and
promising ideas about confinement: Besides the leading
log models this includes dual superconductivity from mo-
nopoles or vortices, see [23,24] for early references and
recent work, and in a different approach Goldhaber and
Goldman have pointed out that scalar glueball exchange
between quarks yields a confining interaction [25] if the
Richardson ansatz [26] for the running coupling is em-
ployed.

Our concern in the present note is not the identifica-
tion of the primary confinement mechanism in the strong
interactions. Instead, we would like to draw attention to
the fact that the glueball-gluon coupling φG2 should be
the leading kinetic term for the gluons at low energies,
thus motivating the inclusion of an r1/3-term in the inter-
quark potential.

2 The classical Coulomb problem in gauge
theory with a dynamical permittivity

The glueball-gluon coupling described in the previous sec-
tion belongs to a class of models which can be parametrized
through a field dependent permittivity ε(φ)

L = −1
4
ε(φ)Gµν

aGµν
a − 1

2
∂µφ · ∂µφ − 1

2
m2φ2 + jµ

aAµ
a,

(4)
and the Coulomb problem for (4) is defined as the problem
to determine φ and the chromo-electric fields for a static
pointlike charge distribution

jµ
a(t, r) = gCaδ(r)ηµ

0 (5)

from their equations of motion

∂2φ = m2φ +
1
4
ε′(φ)Gµν

aGµν
a, (6)

∂µ

(
ε(φ)Gµν

a

)
+ gε(φ)Aµ

bfab
cGµν

c = −jν
a. (7)

Here the prime denotes derivation with respect to φ. Ca =
1
2ζ+

s · λa · ζs are expectation values of the Gell-Mann ma-
trices λa/2 in color space and satisfy

CaCa =
1
3
.

The covariant constancy Dµjµ = 0 of the sources fol-
lows again from the generalized Yang-Mills equation (7)
and DµDνGµν

a = 0.
To analyze (6,7) it is convenient to rewrite it in terms

of the chromo-electric and magnetic fields Ei = −G0i
aXa,

Bi = 1
2εijkGjk

aXa:

∂2
0φ − ∆φ =

1
2
ε′(φ)(Ea · Ea − Ba · Ba) − m2φ,

∇ ·
(
ε(φ)E

)
− igε(φ)(A · E − E · A) = %,

∇ · B − ig(A · B − B · A) = 0,

∂0

(
ε(φ)E

)
− ∇ ×

(
ε(φ)B

)

+igε(φ)([Φ,E] + A × B + B × A) = −j,

∂0B + ig[Φ,B] + ∇ × E − ig(A × E + E × A) = 0,

where the Bianchi identities were also included and the
currents are Lie algebra valued.

For the Coulomb problem this reduces to

∇ ·
(
ε(φ)Ea

)
= gCaδ(r), (8)

∆φ = m2φ − 1
2
ε′(φ)Ea · Ea, (9)

while Faraday’s law reduces to ∇×Ea = 0 complying with
chromo-electric potentials Ea = −∇Φa.
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Equation (8) yields the chromo-electric potentials

Φa(r) = −gCa

4π

∫
dr

µ(φ(r))
r2 (10)

where µ(φ) = ε(φ)−1 is the dynamical permeability, and
this shows that the dynamical permittivity yields confine-
ment if limr→∞ rε(φ(r)) is bounded.

The scalar field has to be determined from

d2

dr2 rφ = m2rφ +
αsµ

′(φ)
24πr3 , (11)

and the arguments of Sect. 1 motivate a contribution f/φ
to µ from the scalar glueball, where f is a mass scale char-
acterizing the strength of the glueball-gluon coupling1.

The equation for φ becomes

d2

dr2 rφ = m2rφ − αsf

24πr3φ2 . (12)

Contrary to the φ2G2 coupling studied in [19], we could
find an analytic solution of (12) only for m = 0. In this
case a first integral to (12) can be found after multiplica-
tion by r3dφ/dr, and the solution obeying the boundary
condition limr→∞ φ = 0 is2 φ3 = 3αsf/16πr2. However,
since we are talking about a a low energy effective dynam-
ical permittivity from a scalar dilaton/glueball we are re-
ally interested in the behavior for large mr. In that case
(12) tells us that

φ →
( αsf

24πm2

)1/3
r−4/3 (13)

and

Φa → −3Ca

( 3g

2π
m2f2r

)1/3
∼ −Car1/3. (14)

This automatically comes with the right sign for an attrac-
tive qq̄-interaction in the singlet channel and a repulsive
interaction in the octet channel, as well as an attractive
qq-interaction for antisymmetric diquark color states and

1 According to (10) we might also incorporate the expected
one-gluon exchange term dominating at short distances by
adding a constant term:

µ(φ) = µ0 +
f

φ
.

This would also have the virtue that (4) approaches the un-
derlying QCD Lagrangian in the high energy regime, i.e. close
to color sources, while still avoiding overcounting of degrees of
freedom in the gluon sector: At high energies the Yang-Mills
term approaches the standard kinetic term for the gluons and
the scalar decouples, while at low energies no free kinetic term
for the gluons exists. We will not include the µ0 term in the
sequel, but we would like to mention that inclusion of such a
term would neither affect the behavior of φ nor the growth of
the chromo-electric potential at large distances.

2 Superficially the integration of (12) for m = 0 yields two
integration constants, of which one can be eliminated from
absence of a δ-function in the equations for φ.

repulsion for symmetric diquark color states: For an (anti-
)quark of color ζq and a quark of color ζs the color factor
following from −Ca in (14) in the tensor product basis is

C(ζs, ζq) = ±1
2

(
|ζ+

s · ζq|2 − 1
3

)
(15)

with the upper sign holding for qq̄-interactions and the
lower sign applying to quark-quark-interactions. The cor-
responding color factors in the irreducible representations
are then as usual

Cqq
1 =

4
3

for the singlet,

Cqq
8 = −1

6
for qq in the adjoint representation of SU(3),

Cqq
S = −1

3

for the diquarks in symmetric color states, and

Cqq
A =

2
3

for the diquarks in anti-symmetric color states.
The static energy density for (2) is

H =
1
2
∇φ · ∇φ +

1
2
m2φ2 +

φ

2f
(Ea · Ea + Ba · Ba), (16)

and partial integration of the gueball terms yields with (9)

H =
3
4

∫
d3r

φ

f
Ea · Ea, (17)

which has the same infrared behavior as

−3
4
gCa

∫
d3r′δ(r − r′)Φa(r′)

and motivates a corresponding power-law term in the inter-
quark potential3.

The glueball-gluon coupling thus motivates a spin-in-
dependent contribution to the qq̄-potential in the color
singlet channel

V (r) = σr
1
3 . (18)

Taking into account that power-law confining poten-
tials with fractional exponents provide good fits to meson
spectra and leptonic decay widths [27–32] the emergence
of the r1/3-term makes it certainly worthwhile to under-
take a closer investigation of the corresponding potential
model. Dual QCD and the success of linearly increasing

3 Formally performing a further partial integration in (17)
and use of ∇· (ε(φ)E) = % yields again linear coupling between
color densities and chromo-electric potentials:

H =
3
4

∫
d3r%aΦa.
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potentials in descriptions of hadron properties [33–36,32]
may indicate that the r1/3-term provides a subleading con-
tribution both at large and short distances. This might
happen, e.g. if monopoles or vortices would dominate at
very low energies, but do not fully account for the non-
perturbative aspects of the QCD vacuum. Then we might
encounter a transition or a crossover from linear confine-
ment to fractional power-law confinement at an interme-
diate scale, and it would depend on this scale where and
when the r1/3-term would have an impact on the meson
spectrum. Also in this case inclusion of an r1/3-term in
QCD motivated potentials and comparison with other po-
tential models would provide a test.
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